Overview of the LISA Phasemeter

Daniel Shaddock, Brent Ware, Peter Halverson, Robert Spero and Bill Klipstein Jet Propulsion Laboratory, California Institute of Technology

Phasemeter

- The output of the photoreceivers will be a *beat note* (a sine wave).
- Gravitational wave information is contained in the phase of this beat note.
- A *phasemeter* measures the relative phase of two electronic signals.

1 cycle of phase shift = 1 wavelength distance change

Phasemeter

Science Measurement

High accuracy measurement for extracting gravitational wave signals. Laser Locking Output Low latency output for laser phase-locking/arm-locking

Phasemeter Requirements

- Science phasemeter must
 - − Resolve the 1,000 cycles/ $\sqrt{12}$ Hz of laser noise to 3 μ cycles/ $\sqrt{12}$ Hz @ 5 mHz (corresponding to 3 pm/ $\sqrt{12}$ Hz @ 5 mHz)
 - Track the frequency of the beat note, dominated by the annual variations in Doppler frequency (2 MHz to 20 MHz)
 - Multi-tone phase measurement and tracking capability for clock phase noise measurement
 - Secondary tones 1 MHz from carrier with -20 dBc amplitude.
 - Provide high speed output to lock slave laser to master laser with < 3 Hz/ $\sqrt{}$ Hz relative noise (less than intrinsic laser noise).
 - Goal: Lock with < 2 $\mu cycles/\sqrt{Hz}$ to simplify TDI, reduce telemetry, etc.
 - Auto acquisition, auto gain, reconfigurable controller response (e.g phase-locking or arm-locking).

Why not zero-crossing phasemeter?

- No information between zero-crossing points.
 - Effective sampling rate = heterodyne frequency.
 - Introduces aliasing of noise from 2f, 3f, 4f, ... (and 0f)
- For LISA could have up to 10 harmonics.
 - Measurement noise increased $\sqrt{10}$ x shot noise ~ 30 pm/ $\sqrt{4}$ Hz.

- Zero-crossing phasemeters are not well suited for LISA.
 - Broadband (shot) noise
 - Sub-shot noise phasemeter error allocation.

Science Phasemeter

Target	Function	Input Samples/second	Output Samples/second
FPGA	Implement I-Q demodulation with digital phase locked loop	40 MHz	10 kHz
Processor	Reconstruct phase and decimate to 3 Hz	10 kHz	3 Hz

Breadboard Phasemeter

- FPGA programmed in LabView
 - uses off the shelf equipment.
 - 8 channels per FPGA.
 - One floating point processor handles all channels.
 - Science and Fast phasemeters share common ADCs.
 - Only linear phase filters used, avoids complicating data analysis.

Science phasemeter testing

GSFC-JPL

Anti-aliasing

 Phasemeter designed to have aliasing suppression of 10⁷ in the LISA signal band.

Sampling time jitter

• Jitter in the sampling time δt produces a phase error

$$\phi = \delta \mathbf{t} \mathbf{x} \mathbf{f}_{het}$$

 For 1 µcycle/√ Hz phase noise requirement, and a 20 MHz heterodyne frequency.

 $\delta t < 0.5 \text{ x } 10^{-13} \text{ s/} \sqrt{\text{ Hz}}$

- Jitter in the sampling time arising from clock is already removed.
- Remaining sampling jitter is the fluctuating latency of the ADC.

ADC.

ADC jitter removal

Cycle Slipping

Cycle Slipping

- Cycle slipping is most sensitive to the input's high frequency noise.
 - Low frequency noise is suppressed by loop gain.
- 30 Hz/ $\sqrt{}$ Hz white frequency noise is too high for current phasemeter.
 - Cycle slipping sets in around 12 Hz/ $\sqrt{}$ Hz white noise.
- More realistic laser frequency noise rolls off.
 - 30 Hz/ $\sqrt{}$ Hz with 1/f roll off above 400 Hz is okay.

Cycle Slipping Solutions:

- 1. Tighten laser frequency noise requirement at high frequencies.
- 2. Increase digital phase-locked loop update rate to reduce the noise in Q.

Laser Locking Output

Laser Locking Output

- Low-latency phase measurement for laser phase-locking and arm-locking.
- All-digital controller implemented on reconfigurable FPGA.
- Uses same ADC as science phasemeter.
- Dynamically adjustable heterodyne frequency.
- Auto-acquisition mode driven by frequency counter (lasers need only be within 20 MHz).
- Automatically senses lock status and switches controller from a low-gain acquisition mode to the high-gain science mode.

Laser Locking Output

- Locked to < 1 μ cycle/ $\sqrt{}$ Hz above 100 mHz
- Locked to < 10 μ cycle / $\sqrt{}$ Hz at 1 mHz
- Low frequency performance limited by ADC jitter.

Frequency Noise Cancellation

- Test phasemeter, photoreceivers, and frequency distribution system using representative signals.
 - 30 Hz/ $\sqrt{}$ Hz frequency noise
 - 2-20 MHz heterodyne signal
 - 2-8 GHz sidebands for clock noise transfer
- System tests will characterize interactions between different errors.
 - Digital filter phase fluctuations (from independent clocks).
 - Frequency noise aliasing from multiple heterodyne frequencies.
 - Interpolation error in the presence of real-world phasemeter filtering and sampling jitter.
 - ADC harmonic distortion mixing with EOMs inter-modulation products.

Noise cancellation

Phasemeter technology readiness

- Phasemeter validated in laboratory
 - Analytical models of the phasemeter replicate the test data.
- Phasemeter path to flight
 - FPGA algorithms implemented with integer processing.
 - Floating-point processing requires only tens of kFlops.
 - Compatible radiation hardened ADCs identified e.g. Maxwell 9042:15 bit, 41 MS/s.

Phasemeter Summary

- Breadboard phasemeter works very well.
 - Phasemeter has passed all digital and electronic tests.
 - Critical requirements have been demonstrated.
 - Optical/electronic tests of the phasemeter in a system environment are underway.
- Phasemeter has a clear path to flight. All components are off the shelf items.
 - Algorithms already developed will perform identically on any FPGA/ASIC.
 - ADC requirements non-critical. Suitable rad-hard candidates available.

Future Work

- Increase sampling frequency to 80 MHz to ease analog filtering requirements.
- Improve DC phase accuracy via ADC calibration tones.
- Reduce susceptibility to cycle slipping

